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Abstract. The Martin-Siggia-Rose functional technique and the selfconsistent Hartree approximation is
applied to the dynamics of a D-dimensional manifold in a melt of similar manifolds. The generalized
Rouse equation is derived and its static and dynamic properties are studied. The static upper critical
dimension, duc = 2D/(2 −D), discriminates between Gaussian (or screened) and non-Gaussian regimes,
whereas its dynamical counterpart, d̃uc = 2duc, discriminates between Rouse- and renormalized-Rouse
behavior. The Rouse modes correlation function in a stretched exponential form and the dynamical expo-
nents are calculated explicitly. The special case of linear chains D = 1 shows agreement with Monte-Carlo
simulations.

PACS. 05.20.-y Statistical mechanics – 83.10.Nn Polymer dynamics – 02.40.Vh Global analysis
and analysis on manifolds

Much attention has been paid recently to the theory of
the dynamical behavior of polymers (or generally speak-
ing polymeric manifolds) and flux-lines in a quenched dis-
ordered random medium [1] or in a melt [2–4]. Technically
either the projection formalism and the mode-coupling ap-
proximation [2,3] or the selfconsistent Hartree approxima-
tion (HA) [1,4] have been used for the derivation of the
equations of motion.

In this paper, the HA is used to investigate the
static and mainly the dynamic properties of a polymeric
D-dimensional manifold (or a fractal) in the melt of the
same manifolds. The generalized Rouse equation (GRE),
which we derived, reproduce in the static limit the screen-
ing and saturation of D-dimensional manifolds [5] in a dif-
ferent way. The whole dynamical consideration results in a
subdiffusive behavior and exponents, which are confirmed
for the 3-dimensional melt by MC and MD simulations
[6–8]. We should stress, that the manifolds in our consid-
eration are crossable, so that entanglements cannot occur
and reptation dynamics is not considered. The dynamics
considered here corresponds to chains below the critical
molecular weight: entanglements are not of importance for
the dynamic behavior [9]. We describe the manifolds below
only in terms of connectivity and excluded volume. The
connectivity defines the D-dimensional subspace which is
embedded in the Euclidean space of d dimension. The
model we have chosen allows the interpolation between
linear polymer chains, which correspond to D = 1, and
tethered membranes (D = 2). By analytic continuation to
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rational numbers of the spectral dimension statements on
polymeric fractals can be made. In a series of papers [5],
we have considered the different regimes in static scaling.
In the present letter we place emphasis on the dynamics.
We will show below, that a new dynamical regime for the
motion of the manifold segments appears.

Let us start with a melt of D-dimensional manifolds in
a d-dimensional space. The test manifold is represented by
the d-dimensional vector R(x, t) with the D-dimensional
vector x of the internal coordinates. In the same way
the manifolds of the surrounding matrix are specified by
r(p)(x, t) (p = 1, 2, ...,M). We have chosen the notation
in such a way, that the boldfaced characters describe the
external degrees of freedom in Euclidian D-dimensional
space, whereas the arrow hatted vectors correspond to the
internal D-dimensional space. The model of the melt ofM
(monodisperse) tethered manifolds used in the following
is based on the generalized Edwards Hamiltonian,

H =
Td

2l2

M∑
p=1

∫
dDx

(
∇xr(p)(x)

)2

+
1

2

M∑
p,p′=1

∫
dDx

∫
dDx′V

(
r(p)(x)− r(p′)(x′)

)
.

(1)

In this melt an additional (test) manifold is immersed
which is described by the variables R(x). The number of
monomers along one side of the manifold is N and limits
the x-integration.
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The corresponding Langevin equations in Cartesian
components j for the test chain has the form

ξ0
∂

∂t
Rj(x, t)− ε∆xRj(x, t)

+
δ

δRj(x, t)

∫
dDx′ V [R(x, t)−R(x′, t)]

+
δ

δRj(x, t)

M∑
p=1

∫
dDx′ V

[
R(x, t)− r(p)(x′, t)

]
= fj(x, t) (2)

and similarly for all other polymers in the melt

ξ0
∂

∂t
r

(p)
j (x, t)− ε∆xr

(p)
j (x, t)

+
δ

δr
(p)
j (x, t)

∫
dDx′ V

[
r(p)(x, t)−R(x′, t)

]

+
δ

δr
(p)
j (x, t)

M∑
m=1

∫
dDx′ V

[
r(p)(x, t)− r(m)(x′, t)

]
= f̃j(x, t) (3)

where ξ0 is the bare friction coefficient, ε = Td/l2 the
elastic modulus with the Kuhn segment length l, V (· · · )
the excluded volume interaction function, ∆x denotes a
D-dimensional Laplacian and the random forces fj and

f̃j have the standard Gaussian distribution.
We find it more convenient to reformulate the

Langevin problem (2,3) in the MSR-functional integral
representation [4]. This representation is especially useful
for performing transformations to collective variables or
integration over a subset of variables. In our case we in-
troduce the matrix density ρ(r, t) and the response field
density π(r, t)

ρ(r, t) =
M∑
p=1

∫
dDx δ(r− r(p)(x, t)) (4)

π(r, t) =
M∑
p=1

d∑
j=1

∫
dDx ir̂

(p)
j (x, t)∇jδ(r− r(p)(x, t)).

(5)

In reference [10] the first systematic expansion of the ef-
fective action in the MSR-functional integral in terms of
ρ and π was given.

The aim now is to integrate over the matrix variables
(4,5). To do this, we make the expansion of the effective
Action up to the 2nd order with respect to ρ and π, which
corresponds to the random phase approximation (RPA).
After performing the (Gaussian) functional integration all
information about the matrix is comprised into the RPA
correlation S00(k, t) and response S01(k, t) functions [10].

The resulting Action includes still the test manifold
variables in a highly non-linear way. In order to handle
it we use the Hartree-type approximation and also take
into account the fluctuation-dissipation theorem for both,

the test manifold and the matrix variables. This strategy
leads (see for details in [4]) to the following GRE

ξ0
∂

∂t
Rj(x, t)

+

∫
dDx′

∫ t

0

dt′Γ (x,x′; t− t′)
∂

∂t′
Rj(x

′, t′)

−

∫
dDx′Ω(x,x′)Rj(x

′, t) = Fj(x, t) (6)

with the memory function

Γ (x,x′; t) =
1

T

∫
ddk

(2π)d
k2|V (k)|2

× F (k; x,x′; t)S00(k, t) (7)

(where F (k; x,x′; t) is the test manifold density-density
correlator), the effective static elastic susceptibility

Ω(x,x′) = εδ(x− x′)∆x −

∫
ddk

(2π)d
k2|V(k)|2

×
[
Fst(k; x,x′)− δ(x− x′)

∫
dDx′′Fst(k; x,x′′)

]
(8)

and the random force has the correlator

〈Fi(x, t)Fj(x
′, t′)〉 = 2Tδij

[
ξ0δ(x− x′)δ(t− t′)

+ θ(t− t′)Γ (x,x′; t− t′)
]
. (9)

In equation (8) the effective potential

V(k) = V (k) [1− V (k)Sst(k)/T ] (10)

gains the standard screened form [9]

V(k) = V (k)
[
1 + V (k)F

(0)
st (k)/T

]−1

(11)

(where F
(0)
st (k) is the free system correlator) if the stan-

dard RPA-result is used for the static correlator Sst(k).
It is an important point that we treat on an equal

footing both, the static and dynamic parts of the GRE
(6). Let us start from the static behavior of equations (6–
11). The static limit of these equations for the Rouse mode
correlator, C(p) = 〈R(p) ·R(−p)〉, yields the Dyson-like
form

C(p) =
d

N
[
d
l2

(
2πp
N

)2
+Σ(p)

] (12)

where N = ND is the total number of monomers in the
manifold and the “self-energy” is given by

Σ(p) =

∫
ddk

(2π)d
k2 V (k)/T

1 + V (k)F
(0)
st (k)/T

×N [Fst(k; p) − Fst(k; p = 0)] . (13)
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The test manifold static correlator in equation (12) is pa-
rameterized by the wandering exponent ζ in such a way

Fst(k; p) =
1

N

∫
dDx exp

(
−
k2l2

2d
x2ζ − i

2π

N
x · p

)
.

(14)

In its turn the exponent ζ is determined by the correlator
C(p):

Qst(x) =

∫
dDp

[
1− e−i

2π
N p·x

]
C(p) ∝ x2ζ . (15)

The system of equations (12–15) should be analyzed self-
consistently. Straightforward calculations yield

Σ(p) = −c1

(
π|p|

N

)ζ(d+2)

− c2

(
π|p|

N

)ζ(d+d0
f+2)−D

(16)

with the Gaussian fractal dimension d0
f = 2D/(2 − D)

[5,12] and c1, c2 are some constants depending on d
and D. Physically, the condition for the exponent ζ
comes from the balance between the entropic and the
interaction terms in the denominator of equation (12).
The analysis shows that the only way to satisfy the
equations (12–15) is to impose the exponents in equation
(16) the condition: ζ(d + 2) = ζ(d + d0

f + 2) − D ≥ 2.

This holds at d ≥ duc = 2D/(2−D) and the only solution
is the Gaussian one with ζ = ζ0 = (2 − D)/2. Besides
that, the necessary condition d0

f < d immediately implies

D < Ds = 2d/(2 + d). The upper critical dimension duc
in a melt and the spectral critical dimension Ds was dis-
cussed first in [5]. At d < duc the interaction term in
equation (12) overwhelms, |Σ(p)| � (2πp/N)2, and the
system become unstable. The manifold is saturated in a
melt, i.e. it loses its fractal nature and becomes compact
[5].

We now consider the dynamics at d ≥ duc. There are
two dynamic exponents, z and w. The exponent z mea-
sures the time dependence of a monomer displacement,
i.e.

Q(t) =

∫
dDp

∫ a+i∞

a−i∞

ds

2πi

[
1− est

]
C(p, s) ∝ t2z (17)

and the exponent w measures the same for the center of
mass

Qcm(t) = lim
p→0

∫ a+i∞

a−i∞

ds

2πi

[
1− est

]
C(p, s) ∝ tw. (18)

In equations (17, 18) C(p, s) =
〈
|R(p, s)|2

〉
is the Rouse-

Laplace component of the correlator C(x, t). The formal
solution of equations (6–8) for C(p, s) is given by

C(p, s) =
Cst(p)

s+
ε( 2πp

N )
2

ξ0+NΓ (p,s)

(19)

where Cst(p) = l2(N/2πp)2/N and Γ (p, s) is the Rouse-
Laplace transformation of the memory function (7).

In the RPA the matrix density correlator S00(k, t) is
well approximated by

S00(k, t) = Sst(k)

×

 exp
{
−k2Dcoop(k)t

}
,(kl)d

0
fN � 1

exp

{
−k

2l2

2d

(
t
τ0

)2z0
}
,(kl)d

0
fN � 1

(20)

where the cooperative diffusion coefficient Dcoop(k) =
ρV (k)/ξ0, τ0 = ξ0l

2/Td and z0 = (2−D)/4 is the Gaus-
sian z-exponent. The corresponding Ansatz for the test
manifold yields

F (k; x; t) = Fst(k,x)

×

 exp
{
−k2DGt

}
,(kl)d

0
fN � 1

exp

{
−k

2l2

2d

(
t
τ0

)2z
}
,(kl)d

0
fN � 1

(21)

where DG is the self-diffusion coefficient.
(i) By making use of equations (20, 21) and equa-

tion (7) in the limit (kl)d
o
fN � 1 one can derive the result

NΓ (p, s) = const.

(
1

τ0s

)1−β

(22)

with

β = z0(d− duc + 2). (23)

In the derivation of equation (22) we also used the as-

sumption l2 � Q(t) � l2N 2/d0
f . The condition β < 1

immediately defines the dynamical upper critical dimen-
sion

d̃uc =
4D

2−D
= 2duc (24)

i.e. the dimension above which the manifold has the sim-
ple Rouse behavior, at d = d̃uc one can call it the marginal
Rouse behavior and only at d < d̃uc the dynamic expo-
nents z and w are renormalized.

At d < d̃uc equation (19), after inverse Laplace trans-
formation, yields

C(p, t) = Cst(p)

×
∞∑
m=0

[
−εA

(
2πp

N

)2(
t

τ0

)β]m/
Γ (mβ + 1)

(25)

where A =
[
β|V (k = 0)|2Sst(k = 0)/ld+2

]−1
and Γ (x)

is the gamma-function. The equation (25) is very close
to the stretched exponential form found by the MC-
and MD-simulations [6]. The equation (25) was actu-
ally calculated in the limit p → 0, and we can use it
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first of all to comparison with simulation results on the
center of mass mean square displacement. By using equa-
tion (25) in equation (18) we obtain

Qcm(t) =
D0

N

(
t

τ0

)w
(26)

where D0 = l2εA/Γ (β + 1) and

w = β = z0(d− duc + 2). (27)

By the same way from equation (17) we can derive:

z = z0β = z2
0(d− duc + 2). (28)

In reference [3] this renormalized dynamics was formally
used as a projected dynamics for the polymer mode cou-
pling approximation (PMCA) and eventually leads to the
GRE which, as the authors claim, can describe the entan-
gled dynamics. We will argue in an extended paper [11]
that this is a result of misinterpretation of the GRE.

(ii) If we assume that the main contribution to the

integral (7) comes from the small wave vectors, (kl)d
0
fN �

1, then we arrive at

NΓ (p, s) ∝ s(d−duc)/2. (29)

Since d > duc, the simple Rouse behavior in the small
wave vector regime does not change.

At the large displacement regime, R2
G � Qcm(t), one

should expect a simple diffusive behavior:

Qcm(t) = dDGt (30)

with

DG = T/N [ξ0 +NΓ (p = 0; s = 0)]. (31)

Now the problem is how DG depends from N? One can
assume that for this case only the small wave vectors,

(kl)d
0
fN � 1, are relevant, i.e. the dynamics of the matrix

is driven by the cooperative diffusion coefficient Dcoop and
the dynamics of the test manifold by the self-diffusion one
DG (see Eqs. (20, 21)). Since in any way Dcoop � DG, the
calculation yields

NΓ (p = 0; s = 0) ∝ [Dcoop]
−1N

(1− d

d0
f

)
. (32)

But Dcoop = O(N0) and d0
f < d, then Γ (p = 0; s = 0)→ 0

at N → ∞. As a result DG = T/N ξ0, i.e. the simple
Rouse result does not change. In Figure 1 we have sum-
marized the overall schematic behavior for Qcm(t). At the
relatively short times, τ0 < t � τR, and displacements,
l2 < Qcm(t)� R2

G, the test chain dynamics is mainly de-

termined by the fluctuations from the interval (kl)d
o
fN �

1. As a result the renormalized Rouseian behavior domi-
nates and e.g. for the melt of polymer chains (D = 1) in
the 3-dimensionnal space the exponent w = 3/4 = 0.75.
In the opposite limit, τR � t and R2

G � Qcm(t), the long

wavelength fluctuations (kl)d
o
fN � 1 are relevant and the

.

R

l

G

τ

2

ττR

2

log(Qcm(t))

log(t)

1.0

0.75

o

Fig. 1. A schematic plot of Qcm(t) for the simple Rouse
(dashed line) and the renormalized Rouse (solid line)
dynamics.

melt almost does not influence the test chain: the simple
Rouse regime is recovered.

MC-simulations of the bond-fluctuation model [6] as
well as the MD-simulations [7] of the athermal melt have
been undertaken. Recently also the static and dynamic
properties of a realistic polyethylene melt have been stud-
ied [8]. Both in MC and MD simulations a slowed down
motion at intermediate times for the center of mass is
clearly observable. It was found e.g. that for the chain
length N = 200 at the relatively short time Qcm(t) ∝ tw

with w = 0.8 (instead of w = 1) in [6] and w = 0.71 in [7].
This deviation from the simple Rouse regime also occurs
for short chains (N < Ne) which clearly are not entangled
[8].

The best test of the renormalized Rouse dynamics pre-
dictions would be the simulation of rather long crossable
(to avoid reptation) chains but still with an excluded vol-
ume interaction. In a recent MC-simulation [13] the statics
and dynamics of such melts have been studied. Unfortu-
nately in [13] the plot Qcm(t) is not given explicitly, i.e.
it stays unclear from this simulation how the mode p→ 0
is renormalized.

In summary, we have shown that by using MSR-
functional technique and the Hartree approximation the
GRE for a D-dimensional manifold in the melt of similar
manifolds can be derived. In this equation the static and
dynamic parts are treated on an equal footing. Besides the
static upper critical dimension, duc = 2D/(2−D), its dy-

namical counterpart, d̃uc = 2duc was found (such that at

duc < d < d̃uc the manifold is Gaussian but renormalized-
Rouseian). We have calculated the dynamical exponents,
w and z, and have explained some novel computer simu-
lation findings.

We have benefited from discussions with J. Baschnagel, K.
Binder, K. Kremer, W. Paul and T.B. Liverpool. We are great-
ful to the Sonderforschungsbereich 262 and the Bundesminister
für Bildung und Forschung for finacial support.
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